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Abstract 
The increased availability of online geographic and species data combined with powerful 
software for predictive modeling create excellent opportunities for generation of meaningful 
predictions of species geographic distributions.  Invasive species are a substantial threat to 
biodiversity in aquatic ecosystems, and accurate predictive models of non-indigenous species 
could assist with efforts to control or stop the spread of these species.  The goal of this study 
was to create and evaluate predictive models of the Nile tilapia (Oreochromis niloticus), which is 
currently invading aquatic ecosystems of Central America.  Environmental data representing 
local and watershed predictors of terrain, geology, soils, ecosystems, and land use were 
combined with tilapia occurrence data to model habitat suitability for tilapias in the watersheds 
that drain to the coast of Belize.  Maximum entropy (MaxEnt) models were trained on 
watersheds that have been invaded for at least 5 years, and the results were projected onto 
data for watersheds that either have not been invaded or have been invaded for less than 5 
years.  The resulting model predicted tilapias to be present in all of the larger main stem rivers 
and many coastal plains tributaries within the study area.  Indicators of model performance 
suggest that the model performs very strongly, showing excellent results for each of the three 
evaluation criteria used.  Of the watersheds that have no known or only recently established 
populations of tilapia, the model predicts that the coastal plain mainstem and large tributary 
streams of Rio Sarstoon, Temash River, Rio Grande, Monkey River, some of the larger creeks 
that drain to Placencia Lagoon, and S. Stann Creek are particularly vulnerable to successful 
colonization.  Model outputs predict that smaller rivers draining to Port Honduras (Golden 
Stream, Deep River, Middle River) are less vulnerable.  This pattern of potential tilapia presence 
suggests that tilapias are most likely to occur in the areas that have also been documented to 
have the highest richness of fishes, pointing to a potential conservation conflict should tilapias 
prove to have negative consequences within the study ecosystems.  The prediction map is a 
valuable starting point for conservation planning, and a useful tool for hypothesis generation and 
formulation of focused research questions.  Furthermore, the environmental datasets, when 
combined with existing point occurrence data of native species, have excellent potential for 
expanded application to modeling native species and, eventually, the creation of predicted 
richness maps (by combining all native species predictions) with much potential for use in 
aquatic conservation planning. 
 
Introduction 
Free online specimen and geospatial databases are a tremendous resource to assist 
biodiversity conservation.  Among the most promising potential applications of online knowledge 
bases is the prediction of habitat suitability for native and non-indigenous species.  When 
applied to non-indigenous species, predictive models allow conservation practitioners to both 
anticipate species invasions in yet-to-be-invaded areas, and to build expectations about 
already-invaded areas with little data.  Empowered with the ability to visualize current invasions, 
and to anticipate future invasion potential, practitioners can then assess invasive species 
threats and formulate prevention and control strategies for susceptible habitats in a timely cost-
effective manner. 
 
Aquatic ecosystems are especially vulnerable to disruption by invasive species compared to 
terrestrial and marine systems (Sala et al. 2000).  This is of concern because they also harbor 
substantial biological diversity and provide many services to human communities.  Thus, 
preventing biological invasions in these systems can be of critical conservation importance, and 
predictive models can help accomplish this.  However, invasion prediction in aquatic (versus 
terrestrial) environments poses special challenges.  In terrestrial environments ecological 
predictions can be made across wide swaths of landscape that encompass relatively indiscrete 
environmental gradients.  By contrast, when making predictions in aquatic ecosystems, where 
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the water’s edge is a hard barrier to dispersal and where there is often strong upstream to 
downstream directionality, the best models should consider attributes pertaining not only to the 
local conditions near a habitat, but all of the integrated conditions in the watershed upstream of 
a habitat.  Thus, the aquatic modeling approach is necessarily different than those commonly 
used in terrestrial systems.  Fortunately, many strong environmental predictors of aquatic 
species distributions can be easily assessed with geospatial data from earth images and GIS, 
and these, in turn, can be applied to prediction of habitat suitability in discrete water bodies 
across large landscape areas (e.g., Joy and Death 2004). 
 
This study integrates geospatial data with field data to demonstrate an effective approach for 
utilizing GIS and the type of data that exist in online knowledge bases—georeferenced 
presence-only records—to create predictive models that anticipate species invasions into 
aquatic habitats.  This type of modeling is often referred to as “ecological niche modeling”, 
because the models attempt to define the “ecological niche” of the organisms being modeled—
the combinations of all relevant ecological variables (including biotic interactions) under which a 
species or population can persist. 
 
This effort focused on the most widely distributed aquatic invasive fish species in 
Mesoamerica—African tilapias (Canonico et al. 2005).  Several species of tilapias have been 
introduced widely outside of their native ranges for purposes of vegetation control, aquaculture, 
and capture fisheries (Courtenay 1997).  Tilapias are a major cause of conservation concern as 
shown by studies reporting them as the cause of local extinctions of native species (Twongo 
1995, Goudswaard et al. 2002), predation on eggs and young of other fishes (Arthington et al. 
1994), eutrophication (Starling et al. 2002), de-vegetation of extensive areas of lake bottom, 
introduction of non-indigenous parasites to other fishes (McCrary et al. 2001), and food web 
alterations (Taylor et al. 1984).  Predictive models of habitat suitability for tilapias can assist with 
the development of conservation plans focused on minimizing their impacts. 
 
The approach demonstrated here can be used to develop models for any riverine ecosystem 
where a species’ success or failure is largely determined by the physical, chemical, and 
positional aspects of aquatic habitats.  For instance, habitat suitability modeling can also be 
extremely useful for other conservation applications, such as the prediction of native species 
distributions, which when added together can yield important conservation indicators such as 
native species richness.  Expanded applications of this study are addressed in the Discussion. 
 
 
Methods 
Study Area 
This research was carried out in the watersheds that drain to the Belizean coast.  This includes 
16 major watersheds—bounded by Rio Hondo in the north and Rio Sartsoon in the south—and 
numerous smaller watersheds (Figure 1).  This area encompasses both the low-elevation 
limestone-based watersheds of the Yucatan Peninsula, and the more mountainous watersheds 
of southern Belize and Guatemala that originate in variable geologies and from elevations 
greater than 1000 m.  The northern part of the study area is characterized by spring fed streams 
and large meandering rivers that cross an extensive coastal plain with many lagoons.  The 
southern part of the study area is characterized by high-gradient surface and spring fed streams 
flowing to large meandering rivers that traverse a short distance across the coastal plain to the 
sea.  The topographic and geologic differences between the northern and southern parts of the 
study area make it an excellent test site for development of predictive models that will be able to 
generalize to mountainous landscapes of the Caribbean slope of Central America and to the low 
elevation areas of Yucatan Peninsula. 
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Only streams and rivers were considered in this study, though field efforts are currently 
underway (2007 field season) to sample lagoon and wetland habitats.  In preparation for this 
effort, all stream lines (n = 36,436) and water bodies (n = 3,966) in the study area were hand 
digitized from scanned and georectified 1:50,000 topographic maps.  The hand-digitized 
streamlines were then used to condition a 30 m Shuttle Radar Topography Mission digital 
elevation model, which was in turn used to create a flow direction grid that was used to calculate 
watershed variables that match the stream line layer. 
 
Description of modeling approach 
A modeling approach was chosen that was (1) quantitatively rigorous; (2) required presence-
only data, not presence and absence; (3) available to the public for free; and (4) user friendly.  
The latter two criteria are important so that the methods reported here can be easily replicated 
by other users.  The approach chosen is called maximum entropy or MaxEnt.  MaxEnt is a 
mathematical approach to predicting an unknown probability distribution based on the principle 
that the estimated distribution must agree with everything that is known about its occurrence 
and be subject to no unfounded constraints.  The approach estimates the most uniform 
distribution (e.g., the distribution with “maximum entropy”) across a defined area subject to the 
constraints imposed by information available about environmental conditions at the locations 
where a species is known to occur and at random background points (Phillips et al. 2004, 
Phillips et al. 2006). 
 
In mathematical terms the final MaxEnt probability distribution maximizes the product of the 
probabilities of the sample locations, and takes the form: 
 
P(x) = exp(c1 * f1(x) + c2 * f2(x) + c3 * f3(x) ...) / Z 
 
Here c1, c2, ... are constants (“weights”), f1, f2, ... are the environmental features, and Z is a 
scaling constant that ensures that P sums to 1 over all cells in the study area.  The algorithm 
that is implemented by this program is guaranteed to converge on the values of c1, c2,..., and Z, 
that give the optimum distribution P (Phillips et al. 2006). 
 
In model training, MaxEnt uses a mathematical process that iteratively adjusts the weights 
associated with each environmental variable as it is presented to the model to maximize the 
likelihood that the occurrence data used to train the model are correctly predicted.  By adjusting 
these weights many times (e.g., 500), the MaxEnt algorithm converges on the optimum 
probability distribution—the best solution to the problem given the data available.  The output of 
a MaxEnt model is a continuous surface of values ranging between 0 and 100, with higher 
values indicating a higher suitability of that area for the target species. 
 
Several recent studies have compared MaxEnt to other modeling techniques, including another 
popular presence-only technique called Genetic Algorithm for Ruleset Production (GARP).  
MaxEnt has consistently performed highly in modeling tests, often outperforming GARP (Phillips 
et al. 2004, Hernandez et al. 2006, Phillips et al. 2006, Pearson et al. 2007), and displaying 
good predictive power even with extremely low species occurrence sample sizes (less than 
10)(Hernandez et al. 2006, Pearson et al. 2007).  This makes MaxEnt a well-suited method for 
use in data poor areas, or for prediction of rare species. 
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MaxEnt software was downloaded from the internet1 and used to develop predictive models.  
Inputs to the MaxEnt software include georeferenced point data of places where a species is 
known to occur, and raster (pixel-based) data layers of the different environmental attributes 
(climate, topography, etc.) hypothesized as important to freshwater fish distributions.  Data 
points for tilapias were only collected from within those watersheds with a confirmed presence 
of tilapias for more than 5 years (an assumed time period sufficient for tilapias to expand their 
population and ranges into suitable habitats within the study watersheds).  The watersheds that 
met this criterion, and thus were included in the model training process, were (from N to S) Rio 
Hondo, New River, Central River, Belize River, Sibun River, North Stann Creek, and Moho 
River (Figure 1).  The results from models developed for these 7 watersheds were then 
projected onto the environmental conditions in the remaining watersheds to yield the final 
predictive map of tilapias in the area. 
 
Environmental attributes 
A total of 30 variables were prepared as 
individual raster layers for possible inclusion in 
the model.  There were two primary data 
sources used to get base data layers, which 
were then subject to various resampling and 
processing operations (described below): The 
Nature Conservancy’s (TNC) Selva Maya 
Ecoregional dataset2 and the Inter-American 
Biodiversity Information Network-Development 
Grant Facility’s (IABIN-DGF) 30 m hydrologic 
derivatives3.  The former dataset was used as a 
source for temperature, precipitation, elevation, 
geology, soils, ecosystems, roads, and 
settlements data, and the latter was used for 
slope and flow direction (Table 1).  The flow 
direction grid used was derived from a 30 m 
digital elevation model with the hand-digitized 
streamlines generated for this project burned 
into the grid to constrain the flow direction to the 
location of the stream channel used here. 
 
Both local variables representing only the 
conditions occurring underneath each stream 
unit, and catchment variables representing 
average or cumulative conditions upstream of a 
given location in the stream network were used 
(Table 1).  Four variable preparation process 
were performed in ArcGIS 9.0® (ESRI 
Corporation) to derive the data layers: (1) 
clipping and resampling of raster grids to attain 
an equal grid extent and cell size across all 
layers; (2) calculation of positional metrics for 
each stream line in the stream and river 

                                                
1 http://www.cs.princeton.edu/~schapire/MaxEnt/ 
2 http://www.selvamaya.org 
3 http://edcintl.cr.usgs.gov/iabin_datadownload.html 

Figure 1.  The study area extended from 
southern Mexico (Rio Hondo) to eastern 
Guatemala (Sarstoon River), and included all 
of Belize.  Seven watersheds were used to 
train models (cross hatch fill), which were in 
turn used to project results to the other 
watersheds (white fill). 
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coverage, which were then converted to individual rasters for each variable; (3) calculation of 
weighted flow accumulation to represent catchment proportions of geologies, soils, ecosystems, 
and upstream averages of catchment precipitation, temperature, slope and elevation; and (4) 
application of a river mask to exclude only those pixels that lay on top of designated stream or 
river segments. 
 
Clipping and resampling occurred to ensure that all environmental layers had the same extent 
and cell size.  Elevation, precipitation, and temperature base layers were resampled to 30 m 
from 60 m, 1000 m, and 1000 m respectively, using cubic convolution as the resampling 
technique. 
 
Positional metrics are variables that measure the distance from the center of any given stream 
segment to some feature of interest.  In this case each stream segment was attributed with a 
measure of linear distance to the Caribbean Sea, the nearest human settlement, and the 
nearest perennial water body.  The size of the nearest water body was also calculated.  After 
these calculations were made, the vector stream layer was converted to an individual raster for 
each of these four fields. 
 
Weighted flow accumulation relies heavily on the IABIN-DGF 30 m resolution flow direction grid 
and a weight grid to calculate the values that flow into the next downstream cell.  The values in 
all the upstream weight grid cells are added to calculate the value in each downstream cell of a 
weighted flow accumulation grid.  In this way, the states of different variables in the upstream 
watershed can be calculated and incorporated into the models.  There are several ways that 
weighted flow accumulation was used.  One way was to calculate how many cells above a given 
pixel in the watershed contained some class state, such as a type of geology.  The weight grids 
used for this purpose were a binary grids (1 or 0 values only) that had a 1 in cells representing 
locations with the class state present and a 0 where the class was absent.  The weighted flow 
accumulation grid in this case was a calculation how many cells with a 1 flowed into each 
downstream pixel.  This in turn was divided (“normalized”) by an unweighted flow accumulation 
grid that contained the number of pixels upstream of each pixel to yield the proportion of the 
watershed in that given class state.  Another way that weighted flow accumulation was used 
was to calculate the sum total of cells in grids containing continuous values (that were not 
limited to 0 or 1, but had many possible values).  The accumulated values of such variables 
(e.g., such as elevation, precipitation, temperature, etc.) were also divided by an unweighted 
flow accumulation grid to yield average values of each variable in the watershed above each 
pixel (rather than proportions).  All catchment variables listed in Table 1 were prepared by these 
two processes. 
 
A mask limits the analysis extent to only those pixels that match pixels that have values within a 
mask layer.  Because this analysis focused on the suitability of streams and rivers for tilapias, 
only pixels with streams and river present on them were considered.  To create a mask that 
would limit each layer to only those pixels with stream or river lines on them, the vector stream 
line layer was converted to a raster and applied to all data layers by setting a mask and using 
either Raster Calculator or the Environments settings to apply that mask. 
 
Tilapia point occurrence data 
Tilapia point occurrence data were collected using three separate methods applied within the 7 
training watersheds: backpack electrofishing, boat electrofishing, and interviews with fishermen.  
Back pack electrofishing involves the use of a pulsed electrical current coming from a pair of 12 
volt motorcycle batteries to stun and collect fish, which are enumerated and returned to the 
stream alive.  Backpack electrofishing (Smith-Root model 12B) was used in wadable mountain 
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streams only, where depths were frequently less than waist height.  Boat electrofishing also 
uses a pulsed electrical current, but the current originates from a 5000 watt generator.  Fishes 
are netted with long dip nets from the bow of the boat, placed in a live well, then enumerated 
and released.  Boat electrofishing (Smith-Root GPP 5.0) was used to sample fishes in non-
wadable habitats of large deep rivers in the coastal plain.  Electrofishing sites were selected by 
a systematic sample every 20 km along the river channel with a random starting point in the first 
5000 river meters.  Additionally, 38 interviews were conducted with fishermen about the 
presence of tilapias in their fishing grounds and voucher specimens were collected to confirm 
the identity of the species they were catching.  Maps were used to help the fishermen identify 
the areas where they catch tilapia.  For each river segment where tilapia was reported as 
present, a point location was placed in the center of that segment. 
 
Table 1.  Environmental variables prepared for entry into MaxEnt models of tilapias (or other species).  
Variables in bold represent those that were selected for entry into the model after using PCA to eliminate 
redundant variables (see Model Development below). 

Variable Min.  
Value 

Mean 
Value 

Max. 
Value 

Average annual catchment air temperature (º C) 20.0 22.9 26.0 
Average annual catchment rainfall (mm) 795 1519 2357 
Average catchment elevation (m) 0.42 334 1047 
Average catchment slope (percent) 0.00 8.93 36.03 
Average local annual air temperature (º C) 20.0 22.6 26.0 
Average local annual rainfall (mm) 794 1493 2391 
Local elevation (m) 0 277.8 1019 
Local slope (percent) 0.00 7.59 99 
Catchment area (km2) 0.01 682 164728 
Catchment geology proportions of:    

Alluvium 0 0.10 1 
Andesite 0 0.43 1 
Mudstones and shales 0 0.43 1 

Catchment soil proportions of:    
Fluvial Gleysols and Vertisols 0 0.38 1 
Leptosol 0 0.35 1 

Catchment terrestrial ecosystem proportions of:    
Caribbean lowland season swamp forest 0 0.02 1 
Central American Atlantic season and evergreen lowland 
forest 

0 0.19 1 

Meso American waterlogged savanna 0 0.02 1 
Peten lowland alluvial seasonal forest 0 0.01 1 
Peten seasonal evergreen forest on karstic hills 0 0.30 1 
North Meso American premontane wet forest 0 0.19 1 
Lowland pine forest 0 0.12 1 

Catchment landuse proportions of:    
Agriculture 0 0.09 1 
Urban 0 0.00 1 

Reach length (m) 1.90 821 35771 
Straight line distance to the sea (m) 13636 85562 182776 
Straight line distance to next perennial lake (m) 0 32442 118926 
Surface area of nearest lake (km2) 0.52 6.13 56.78 
Straight line distance to nearest human settlement (m) 69 8282 31398 
Proportion of catchment with roads 0 0.01 0.51 
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Model development 
The model development process involved data reduction, training of the model, evaluation of 
the model, and projection of final predictions to the watersheds not used in model training. 
 
Data reduction was necessary to eliminate redundant variables (e.g., variables carrying roughly 
the same information) and to yield models that are easier to interpret.  The goal was to retain no 
more than 10 variables that characterized the range of different environmental characteristics at 
all sites sampled in the watersheds (whether or not tilapias were captured there).  Principal 
Components Analysis (PCA) was used to assist with the variable reduction process.  PCA is a 
statistical approach that can assist with the identification of intercorrelation between many 
variables within a multivariate dataset like the environmental dataset presented here.  The 
approach allows for an assessment of redundancy between variables (e.g., if 3 variables 
correlated strongly to the first axis, they carry the same information and can probably be 
reduced to only one).  PCA was performed using PC-Ord software® (McCune and Mefford 
1999).  This process led to the selection of 8 variables to include in the final model (Table 1, 
bold). 
 
After variables were selected, the MaxEnt model was parameterized.  The model was run in 
‘samples with data’ mode for 500 iterations, using 10,000 randomly selected background points, 
a convergence threshold of 0.00001, and a regularization factor of 1.  Twenty-five percent of the 
tilapia presence points were withheld from the data set and used to test the accuracy of the 
model.  The jackknife option was selected to assist with the interpretation of variable importance 
to the model outcome.  The jackknife operation automated by the MaxEnt software runs the 
model over again without each environmental variable, and then with each variable alone.  
Running the model without the variable reveals which contains the most information that is not 
present in other variables.  Running the model with each variable alone shows which appear to 
have the most useful information by themselves. 
 
Three tests were used to evaluate the performance of the model: (1) the area under the curve of 
the receiver operating characteristic plot (ROC); (2) test prediction success; and (3) a one-tailed 
binomial test.  All three of these outputs are automated by the MaxEnt software.  A ROC plot is 
created by plotting the fraction of true positive predictions (sensitivity) against the fraction of 
false-positive predictions across all available decision thresholds (a threshold is a point along 
the curve above which you assume the species is present, and below which it is assumed not 
present or of unknown presence).  A ROC curve that maximizes sensitivity at low values of the 
false-positive fraction is considered a good model and can be quantified by calculating the area 
under the curve (AUC; Fielding and Bell 1997).  The AUC is considered a measure of the 
model’s overall performance and usually has values ranging from 0.5 to 1.0, where a score of 
0.5 implies that the predicted probability distribution does not discriminate any better than a 
random probability distribution, and 1 indicates that the model can discriminate between true 
and false positive occurrences perfectly.  The other two metrics of model performance require 
the selection of a threshold value.  Here, the minimum training presence value was used as the 
threshold.  The minimum training presence threshold uses the lowest predicted suitability value 
of all the pixels occurring underneath the training samples (where we knew the fish to be 
present), and can be interpreted as the value that is at least as suitable as those where the 
species has been recorded present.  Once a threshold is selected two additional performance 
metrics are applicable.  Test prediction success is the percentage of sites in the test dataset that 
were successfully predicted as present by the model at the given threshold.  A one-tailed 
binomial test determines whether a model predicts the test localities significantly better than 
random.  If the P-value is greater than 0.05 then the model failed to significantly predict better 
than random using a 95% confidence interval. 
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To display results, raster predictions were converted back to vector by averaging pixels 
underneath each stream segment (using zonal statistics in ArcGIS Spatial Analyst).  Stream 
segments were then classified by the threshold value resulting in two categories (“predicted 
present” and “unknown presence”).  Because MaxEnt uses presence-only data, it is impossible 
to infer true absence from the outputs.  However, under the assumption that sampling was 
intensive enough to document tilapia presence to the edge of its range within a watershed, for 
planning and hypothesis generation, I present values below the presence threshold as 
“Assumed absent” here. 
 
Results 
Oreochromis niloticus, the Nile tilapia, was documented from a total of 67 different localities 
within the 7 training watersheds (Figure 2).  These point data were used in conjunction with 8 
variables selected from the environmental variable pool to create MaxEnt models of habitat 
suitability for tilapias.  The 8 variables 
retained in the model included linear 
distance to the sea, local elevation, local 
temperature, catchment proportion of the 
Peten seasonal evergreen forest on 
karstic hills ecosystem, catchment 
proportion of agricultural land use, 
catchment proportion covered with 
roads, distance to nearest human 
settlement, and size of nearest water 
body.  The models trained on data from 
tilapia invaded watersheds were 
projected to environmental layers of all 
the watersheds in the study area. 
 
The minimum training presence 
threshold (at cumulative value = 2.659) 
was used to classify all river cells as to 
whether the habitat was predicted to be 
suitable for tilapias (e.g., tilapias present) 
or not appropriate (assumed absent).  
Twenty-eight percent of all rivers in the 
study area (8256 km of 29858 km) were 
predicted to be suitable for O. niloticus, 
especially those rivers located within 
lower elevation areas of the coastal 
plains near main stem rivers (Figure 3). 
 
Model performance measures indicated 
that the model predicted tilapia presence 
with very high accuracy that was very 
significantly different from what would be 
expected from random predictions.  A 
test AUC of 0.95 is a very high value that 
suggests that 95% of the time a random 
selection of values from pixels with 
tilapia known to be present will have a 

Figure 2.  Tilapias were collected at 67 localities 
within the 7 training watersheds using electrofishing 
(pink triangles) and fisherman surveys (green dots).  
Electrofishing sites where no tilapias were collected 
are represented in black (these sites not included in 
model development). 
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Figure 3.  Training and projection watersheds used in the model (left).  Predictions within projection 
watersheds represent an estimate of vulnerability to tilapia colonization.  (Right)  Predicted results from 
the MaxEnt model of tilapia after a threshold (minimum training presence) was applied.  Red lines 
indicate that the habitat was predicted to be suitable for tilapias (predicted presence), and blue lines 
represent assumed absence (“Absence”).   
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better predicted suitability than a random selection of values from pixels with no known tilapia 
presence.  This is further reinforced by an overall prediction success rate of 100% of test 
values, and a highly significant (P <0.0001) binomial test result indicating that the model 
predicted test results very significantly better than random. 
 
Results of the jackknife test of variable importance suggested that the variable that appears to 
have the most useful information by itself is local elevation, followed by catchment proportion of 
the Peten seasonal evergreen forest on karstic hills ecosystem, and catchment proportion of 
agriculture (Figure 4, blue bars).  Local temperature had the least useful information by itself.  
The environmental variable that appeared to have the most information that was not present in 
the other variables was catchment proportion of Peten seasonal evergreen forest on karstic hills 
ecosystem, followed by local elevation and distance to the nearest human settlement (Figure 4, 
green bars).  The variable that had the least information that was not present in the others was 
local temperature. 
 
Discussion 
The model of habitat suitability for tilapias in Belize represents the first of its kind for tilapias in 
the region and perhaps the world (based on review of the published literature).  The results of 
the model can be interpreted as displaying those habitats that are suitable for tilapias, and those 
for which suitability is unknown or unlikely.  It is important to note the need to use “unknown 
suitability” instead of a more absolute designation of “unsuitable”.  This is the result of using 
presence-only data rather than presence and absence data.  Were true absence data available 
for modeling, then the conclusions could be more assertive.  Nevertheless, having a prediction 
of those habitats that are suitable allows for the conclusion that, if tilapias were to occupy all 
habitats suitable to them, that they would be present in all of the river segments represented as 
red in Figure 3. 
 
From these results, it can be hypothesized that the coastal plain reaches and some larger 
mountain tributaries of the river systems that have not yet been invaded by tilapias are 
vulnerable to invasion.  The 
majority of these rivers are 
those flowing from west to 
east out of the Maya 
Mountains, which have no 
known tilapia populations 
(except for Monkey River).  
These results support the 
idea that tilapia prevention 
measures and education are 
warranted in these un-
invaded watersheds, 
especially if they are found to 
have exemplary or unique 
species assemblages or 
ecological communities. 
 
Model results suggest that 
potential negative influences 
of tilapias are likely to be 
constrained to coastal plain 
ecosystems, unless impacts 

Figure 4.  Results of jackknife test of variable importance.  Blue bars 
represent the model run with only each variable listed at the left.  
Green bars represent the model run with all variables except the one 
listed at left.  These can be interpreted as the variable that contributes 
the most to the model alone, and the one that has the most amount of 
information not represented by other variables respectively.  
WBAREA_M2 = water body area; TEM30MRIV = local temperature; 
SNEAR_DIS = distance to human settlement; PRROADSRIV = 
proportion of catchment in roads; PRAGRICRIV = proportion of 
catchment in agriculture; ECOS18RIV = proportion of catchment in 
Peten seasonal evergreen forest; DEM30MRIV = local elevation; 
CSNEAR_DIS = distance to sea. 
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are transmitted upstream via interactions with migratory species that move to and from the 
mountains to fulfill their life cycles.  Previous studies in Belize (Esselman et al. 2006) and in 
other locations in Mesoamerica (Lyons and Schneider 1990) have shown that native fish 
species richness is highest in coastal plain rivers, increasing as they near the sea.  This 
suggests that, should the predictions of tilapia presence prove accurate in nature, the habitats 
that are most suitable to tilapias are also the most species rich habitats within the river network.  
This raises obvious conservation concerns, as tilapias have been proven to have negative 
consequences for native species or ecosystem processes (e.g., nutrient cycling) in many 
ecosystems outside of the study area (Canonico et al. 2005). 
 
The results of the jackknife tests of variable importance point to the clear importance of local 
elevation, and the possible relationship between tilapia occurrence and anthropogenic activities, 
particularly upstream agricultural activities and distance to the nearest human settlement 
(Figure 4).  It is difficult to say for certain whether these variables or their correlates (e.g., slope 
is a correlate to elevation) are actually driving apparent patterns in tilapia occurrence.  The 
Peten seasonal evergreen forest on karstic hills ecosystem is another variable that is difficult to 
interpret.  The ecosystem is located in the 
medium elevation hills of almost all of the 
watersheds in the study area, but do not occur 
in the lowlands or the highlands.  This is also a 
plant community that is affiliated with limestone 
geology.  It is possible that one or both of these 
relationships—middle elevations and/or 
limestone bedrock—are influencing the 
predicted pattern of tilapia habitat suitability. 
 
The results of predictive models—even those 
with high performance against test data—
should always be interpreted somewhat 
conservatively.  More than anything, the 
models help us recognize possible scenarios 
that should be validated and elucidated 
through targeted research programs.  One 
important research question is what impacts, if 
any, does tilapia have on fish communities and 
ecosystem processes within the specific 
ecological context of these study systems?  
Other questions relate to the siting of 
conservation activities.  Questions such as, 
what habitats that are suitable to tilapias 
contain the most species richness?  Which of 
these high diversity systems are most prone to 
disruption and why?  Which of the rivers that 
are yet to be invaded, are most important to 
conservation?  Each of these questions could 
influence the types of decisions that should be 
made to conserve native biodiversity. 
 
The model predictions were made based on 
incomplete information.  Not all stream types 
were sampled in this study.  Additional 

Figure 5.  Sample sites for native species 
available from Esselman (unpublished; black 
dots), and Schmitter-Soto (1998).  An additional 
115 sites are not shown (from Greenfield and 
Thomerson 1997) 
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information from a greater diversity of habitats will only improve the accuracy of the model, 
which already performed well.  Simply having the ability to ask informed questions reveals the 
utility of such models for aiding the formation of reasonable hypotheses that can help guide our 
conservation and research activities. 
 
Though only one species of conservation concern is presented here, all native species for which 
data are available could be predicted from the same exact datasets.  In practical terms, the 
majority of the work in this process is in preparation of the environmental data layers.  Now, at 
least 30 different variables are available to conduct high resolution modeling of other species.  
Data for such an effort include samples from this study (n = ~100), samples collected from 1970 
to 1979 in Belize by Greenfield and Thomerson (1997; n = 115), and samples from the mid-
1990’s in Mexico (n = 237; Schmitter-Soto 1998) for a total of 452 sites (Figure 5).  These data 
points give the potential to model more than 119 fish species from the study area.  Not each 
species is present at all of these points, but in cases where even 10 points are available, 
MaxEnt models have been shown to produce accurate results (Pearson et al. 2007).  Thus, an 
important expanded application of these data is to predict habitat suitability for all native species 
in the study area. 
 
Powerful conservation planning tools will result from having multiple data layers of predicted 
native species presence, and layers of potential threats like tilapias, or a combined threat index 
(e.g., Clark and Schill in prep).  It is an easy operation to add raster layers in ArcGIS to yield a 
predicted richness surface.  Overlaying such a richness surface with some index of 
anthropogenic stress could lead to effective ways for visualizing and planning aquatic 
biodiversity conservation in settings where data are scarce.  In such cases, the sole option is 
often to proceed based on our best conservation hypotheses.  This is the situation in most 
developing countries, in many developed countries, and certainly within the study area 
presented here.  Fortunately, with the technology and the datasets both already available, the 
situation is ripe to create predictions of the entire fish community to continue to push aquatic 
conservation planning forward in a region that is in great need of such capacity. 
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